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Abstract

Two well-known examples of dualities between integrable systems are the
spectral duality and the Ruijsenaars (or PQ-) duality. We have shown that
PQ-duality between rational Calogero system and itself, or between trigono-
metric Calogero system and Heisenberg chain, can be described in terms of
spectral duality. In particular, one can make a gauge transformation that adds
dependence on the spectral parameter to the Lax matrix without changing the
Lax equation. The spectral dual system after the inverse gauge transforma-
tion of the Lax matrix turns into the Lax matrix of the PQ-dual model.

1. PQ- or Ruijsenaars duality

The Ruijsenaars duality for N -particle systems builds a correspondence be-
tween the coordinate variables of one system and the action variables of an-
other: (qi, Ii) ↔ (Ĩi, q̃i). Such a duality is known, for example, between the
rational Calogero model and itself and between the trigonometric Calogero
model and the rational Ruijsenaars-Schneider model.
The phase space of the rational Calogero model is obtained by the Hamilto-
nian reduction of T∗ glN = glN ∗ glN . Performing a Hamiltonian reduction, we fix
a momentum map level:

µ(A,B) = [A,B] = νO, Oij = 1 − δij, A,B ∈ glN
Diagonalizing different matrices while resolving momentum equation, we ob-
tain either [Q,L] = νO equation or [L̃, Q̃] = νO, where L is the Lax matrix of
Calogero system:

(L)ij = δijpi + ν
(1 − δij)
qi − qj

, i, j ∈ 1,N.

and L̃ is the Lax matrix of the dual one. Both systems are connected by
adjoint action: AdDΨ-1, D = δij∑kΨki.
In case of trigonometric Calogero model, the phase space is T∗GlN =
GlN ∗ glN , and the moment equation is:

µ(A,B) = A −BAB−1 = νO, Oij = 1 − δij, A ∈ glN , B ∈ GlN

Resolving this equation with respect to matrices A or B, we obtain either
trigonometric Calogero model:

(L)ij = δijpi − ν(1 − δij)
e−qij/2

sh(qij/2)
, qij = qi − qj, (1)

or rational Ruijsenaars-Schneider system:

(L̃)ij =
ν

q̃i − q̃j + ν
ep̃j∏

k≠j

q̃j − q̃k − ν
q̃j − q̃k

.

2. Spectral duality

Spectral duality describes the duality between two spin systems that have a
Lax representation that depends on the spectral parameter z. The spectral
curves for such dual systems coincide:

Γ(λ, z) ∶ det(L(z) − λ) = 0

A basic example of such a duality is rational Gaudin system:

L(z) = Λ +
N

∑
a=1

Sa

z − za
, (Λ)ij = δijλi, S,Λ ∈Mat(M ×M). (2)

In special reduced case of rkSa = 1, we can write spin variables as: (S)aij =
ξiaηaj. For new variables we have canonical Poisson bracket:

{Sa
ij, S

b
kl} = δab(δkjSa

il − δilSa
kj) → {ηia, ξjb} = δijδab

If we interchange marked points zi and parameters λi and consider Gaudin
system with a slightly different spin variables Ai = ηiaξaj:

L′(z) = Z +
M

∑
i=1

Ai

z − λi
, (Z)ij = δijzi, A,Z ∈Mat(N ×N), (3)

we obtain that spectral curves of models (2) and (3) coincide:

det(L(z) − λ) = const ⋅det(L′(λ) − z).

Another example [1] of spectral dual systems are the trigonometric Gaudin
model:

L(z) =∑
a

cth(z − za)EiiS
a
ii +∑

a

1

sh(z − za)
∑
i<j
(ez−zaEijS

a
ij + e−z+zaEjiS

a
ji)

and the Heisenberg chain:

T (x) =∏
j

(x − xj)V (q)(1 +∑
i

Ai

x − xi
) .

3. Rational case

It turns out that the PQ-duality can be described from the point of view of spec-
tral duality. Indeed, consider the Lax matrix for the rational Calogero-Moser
model (1). We can make a gauge transformation introducing the spectral
parameter z:

L→ L′(z) = gLCg−1, (g)ij = δij(z − qi),
then we get:

(L′(z))ij = (δijpi + ν
(1 − δij)
qi − qj

) − (1 − δij)
ν

z − qj
.

The resulting Lax matrix can be represented as a sum of rational Calogero-
Moser Lax matrix and a degenerate Gaudin-type Lax matrix:

(L′(z))ij = LCal − ν
N

∑
a=1

O
a

z − qa
= LCal −LGaud(z), (Oa)ij = (1 − δij)δaj.

Making gauge transformation by eigenvector matrix Ψ (LΨ = ΨΛ), we obtain:

L̃(z) = Ψ−1L′(z)Ψ = Λ − ν
N

∑
a=1

Sa

z − qa
,

where Λ is diagonal matrix of action variables and new spin variable (rkSi = 1),
and can be represented as Sa = ξiaηaj, where ηaj = Ψaj and ξia = ∑kΨ

−1
ik (1−δka).

If we consider the spectral dual Gaudin system (3):

L̃(λ) = Q − ν
N

∑
a=1

ηiaξaj
z − λa

,

and again perform a gauge transformation:

L̃(λ)→ L̃ = gDΨ−1L̃(λ)ΨD−1g−1, D = δij∑
k

Ψki,

we will obtain a PQ-dual Calogero-Moser system.

4. Trigonometric case (work in progress)

The same idea also works in trigonometric case. If we consider trigonometric
Calogero model (1) and perform gauge transformation:

L→ L′(z) = gLCg−1, (g)ij = δij
e

qi
2

sh(z−qi2 )
,

we again will obtain the Lax matrix which is represented as a sum of initial
Calogero matrix and a Gaudin like term:

L′(z) = LCal − ν∑
a

e
z−qa
2 O

a

2 sh(z−qa2 )
, (Oa)ij = (1 − δij)δaj.

We expect that after some gauge transformation we will obtain a system dual
to some form of Heisenberg chain, which after inverse gauge transformation
will become rational Ruijsenaars model.

References

[1] Mironov A., Morozov A., Runov B., Zenkevich Y., Zotov A., ”Spectral Du-
ality Between Heisenberg Chain and Gaudin Model”, Lett. Math. Phys.
(2013), 103, 299–329 [arXiv:1206.6349].

[2] Ruijsenaars S., ”Action-angle maps and scattering theory for some
finite-dimensional integrable systems III. Sutherland type systems and
their duals”, Publ. RIMS (1995), 31, 247–353.

yelizaveta.kupcheva@phystech.edu

